

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Determination of Water Associated with Some Iron Acetylacetones and Nickel Glyoximes Extracted into CHCl_3

Richard Motley^{ab}; Clifton E. Meloan^a

^a Department of Chemistry, Kansas State University, Manhattan, Kansas ^b DuPont Research Laboratories, Old Hickory, Tennessee

To cite this Article Motley, Richard and Meloan, Clifton E.(1968) 'Determination of Water Associated with Some Iron Acetylacetones and Nickel Glyoximes Extracted into CHCl_3 ', *Separation Science and Technology*, 3: 3, 279 – 284

To link to this Article: DOI: 10.1080/01496396808052215

URL: <http://dx.doi.org/10.1080/01496396808052215>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Determination of Water Associated with Some Iron Acetylacetones and Nickel Glyoximes Extracted into CHCl_3

RICHARD MOTLEY* and CLIFTON E. MELOAN

DEPARTMENT OF CHEMISTRY
KANSAS STATE UNIVERSITY
MANHATTAN, KANSAS

Summary

Utilizing the Karl Fischer titration technique for the quantitative determination of water, the number of water molecules associated with a molecule of chelate when extracted from water into chloroform was determined for five chelates in the acetylacetone and dimethylglyoxime types. In this investigation no increase in the number of associated water molecules was observed as the bulkiness of the ligand was increased by the substitution of electron-withdrawing groups for methyl groups on the ligand, nor was any increase noted when the metal ion in the chelate was less sterically hindered to the approach of water molecules than in the phenanthroline chelates. The fact that the chelate contains hydrogen-bonded sites does not appear to affect the number of water molecules associated with the chelates investigated here.

It was the purpose of this investigation to further extend the limited knowledge now available concerning the water associated with the extraction of metal chelates. Before a true understanding regarding the nature of solvent extraction and adduct formation can be realized, more information regarding the nature of the extracted species must be available. The number of molecules of water associated with some iron acetylacetones and nickel glyoximes when extracted into chloroform were to be determined utilizing the Karl Fischer titration technique developed by Meloan and

* Present address: DuPont Research Laboratories, Old Hickory, Tennessee.

Brandt (10) and later refined by Gere and Meloan (8,9). The investigation of associated water with these chelates will provide basic information about two more classes of chelates with regard to their behavior toward adduct formation with water during solvent extraction.

It was desired to investigate a series of acetylacetone chelates, as the previous work was done where the two atoms of the chelate which bond to the metal ion were nitrogen-nitrogen (2,7,9) and nitrogen-oxygen (8) but no work where the two atoms were oxygen-oxygen. Other reasons for choosing the acetylacetone chelates include the facts that the effect of subsequent substitution of phenyl groups for methyl groups could be examined, the chemistry of the iron acetylacetones has been extensively studied (1,5,12), and they have very favorable distribution coefficients for extraction from aqueous solutions (13). It seems quite likely that since the structure of the phenanthroline and acetylacetone chelates of iron are similar in many respects that their behavior toward associating with water during solvent extraction might be similar.

An examination of a square-planar complex was deemed worthwhile, for until now there has been no report of an investigation for associated water involving square-planar complexes. A square-planar chelate in solution is nickel dimethylglyoximate, whose chemistry has been well worked out (4). If there is water associated with these square-planar chelates, it can attach to the metal ion from above and below the plane of the glyoximes, or since the chelate is hydrogen bonded, this might present another site for water association to the chelate. It was for these reasons that an examination of the square-planar nickel chelates for associated water was performed.

EXPERIMENTAL

Chemicals

2,4-Pentadiene Solution. Eastman White Label 2,4-pentadiene (acetylacetone) was purified to remove any acetic acid by shaking the liquid with one-tenth its volume of dilute (1:10) ammonia followed by two successive tenth-volume portions of distilled water. The acetylacetone was dried over anhydrous Na_2SO_4 . Following a water-acetylacetone azeotrope forerun, the pure compound distills. The portion boiling from 135 to 136°C was collected.

It is stable and can be stored almost indefinitely (11).

All other chemicals were reagent grade and were used as received.

Apparatus

Aquameter. A Beckman KF-3 Aquameter incorporating dead-stop end-point detection was used for all automatic titrations of water. This has been previously described by Gere (6,8).

Procedure

The procedure utilized in determining the number of molecules of water associated with the particular chelate by the Karl Fischer titration technique was essentially that employed by Gere (7) and Burchett (2), with suitable modifications where necessary.

The slope and intercept were calculated by the method of least squares described in detail by Gere (6).

RESULTS AND DISCUSSION

In Fig. 1 are shown the ligands which were used in this investigation.

The acetylacetone chelates investigated in this study can be considered as a series where substitution occurs at the carbonyl group. All three of the chelates studied are octahedral with the acetylacetone acting as a monobasic bidentate chelating reagent. The ring thus formed upon chelation has a partial aromatic character, and for that reason it was thought that its behavior might be similar to that of the phenanthroline chelates investigated previously in this laboratory. These chelates contain pockets in much the same manner as the phenanthrolines and do not offer as much steric hindrance to the approach of water molecules as does the phenanthroline chelates. Gere (6) showed that substituting phenyl groups on the phenanthroline chelate of iron greatly increased the amount of water which was associated with this chelate when extracted into organic solvents. This same effect was investigated in the ferric acetylacetone series discussed here.

All the data of this investigation are of the same general form as that shown in Ref. 6 and for this reason only the results of the least-squares calculations are shown in Table 1.

In looking at the overall results obtained with the series of acetylacetone chelates of iron investigated in this study, it can be stated

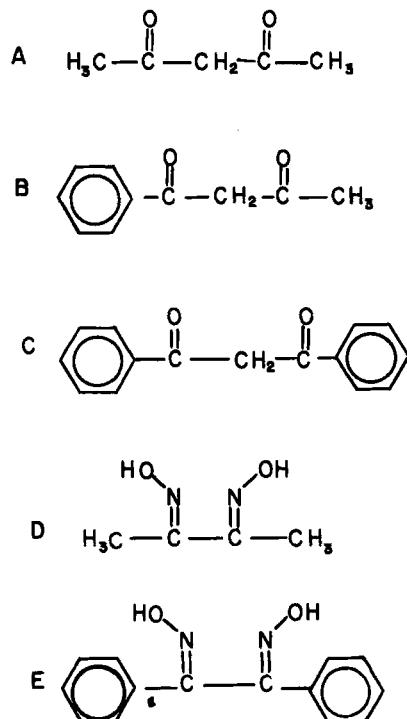


FIG. 1. Structure of ligands used. (A) 2,4-Pentanedione; (B) 1-phenyl-1,3-butanedione; (C) 1,3-diphenyl-1,3-propanedione; (D) dimethylglyoxime; (E) diphenylglyoxime.

TABLE 1
Results of Least-Squares Determination of the Number of H_2O Molecules Present

Chelate	H_2O associated	Blank	Net
Tris(2,4-pentanedionate)-iron(III)	0.2 ± 0.2	—	0
Tris(1-phenyl-1,3-butanedionate)iron(III)	4.6 ± 0.7	5.1 ± 0.4	0
Tris(1,3-diphenyl-1,3-propanedionate)iron(III)	4.8 ± 0.2	5.5 ± 0.7	0
Bis(dimethylglyoximate)-nickel(III)	3.0 ± 1.1	3.0 ± 0.5	0
Bis(diphenylglyoximate)-nickel(II)	18.1 ± 1.5	18.1 ± 1.5	0

that within experimental error there are no molecules of water associated with any of these chelates when they are extracted into CHCl_3 . The increase in the number of associated water molecules within a given series of chelates attributed to the presence of electron-withdrawing phenyl groups observed by Gere (7) does not seem to be a general phenomena, as this present investigation of ferric acetylacetones clearly points out.

On the basis of these Karl Fischer titrations, we cannot definitely rule out the possibility that water may form an adduct with the ferric acetylacetones, but if one does form, it is replaced by the chloroform solvent molecule which may be a more stable adduct. Steinbach and Burna (14) and Clark et al. (3) have studied the halomethane solvates of ferric acetylacetone and found that chloroform forms a 2:1 adduct having a bonding energy of 4.9 kcal. This would indicate that if water does form an adduct with these acetylacetones, then upon extraction into chloroform the H_2O molecules are replaced by solvent molecules. This study does not entirely rule out the possibility that a H_2O adduct may form in the aqueous phase but certainly indicates that after extraction into chloroform that a water adduct is not present.

The investigation of the two square-planar complexes of nickel show that apparently H_2O will not associate with the already extensively intramolecularly hydrogen-bonded portion of the chelates. Here again, as in the previously discussed acetylacetone series, the presence of phenyl groups did not increase the number of associated H_2O molecules, as Gere and Meloan (8) observed in the phenanthroline series.

CONCLUSIONS

Utilizing the Karl Fischer titration technique for the quantitative determination of water, the number of water molecules associated with a molecule of chelate when extracted from water into chloroform was determined for five chelates in the acetylacetone and dimethylglyoxime types. Least-squares analysis of the data obtained showed that the chelates tris(2,4-pantanediionate)iron(III), tris(1-phenyl-1,3-butanediionate)iron(III), tris(1,3-diphenyl-1,3-propanedionate)iron(III), and bis(diphenylglyoximate)nickel(II) have 0.2 ± 0.2 , -0.5 ± 0.8 , -0.7 ± 0.7 , 0.0 ± 1.2 , and 0.5 ± 2.1 molecules of water associated with a molecule of each chelate, respectively. In this investigation no increase in the number of associated water

molecules was observed as the bulkiness of the ligand was increased by the substitution of electron-withdrawing groups for methyl groups on the ligand, nor was any increase noted when the metal ion in the chelate was less sterically hindered to the approach of water molecules than in the phenanthroline chelates. The fact that the chelate contains hydrogen-bonded sites does not appear to affect the number of water molecules associated with the chelates investigated here.

Acknowledgment

Financial assistance by the National Science Foundation is gratefully acknowledged.

REFERENCES

1. M. J. Badoz-Lambling, *Ann. Chim. (Paris)*, **8**, 586 (1953).
2. A. S. Burchett, Doctoral Dissertation, Kansas State University, Manhattan, 1966.
3. F. R. Clark, J. F. Steinbach, and W. F. Wagner, *J. Inorg. Nucl. Chem.*, **26**, 1311 (1964).
4. F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, Wiley-Interscience, New York, 1962.
5. D. T. Farrer and M. M. Jones, *J. Phys. Chem.*, **68**, 1717 (1964).
6. D. R. Gere, Master's Thesis, Kansas State University, Manhattan, 1962.
7. D. R. Gere, Doctoral Thesis, Kansas State University, Manhattan, 1965.
8. D. R. Gere and C. E. Meloan, *J. Inorg. Nucl. Chem.*, **25**, 117 (1963).
9. D. R. Gere and C. E. Meloan, *J. Inorg. Nucl. Chem.*, **25**, 1507 (1963).
10. C. E. Meloan and W. W. Brandt, *J. Inorg. Nucl. Chem.*, **24**, 1645 (1962).
11. G. H. Morrison and H. Freiser, *Solvent Extraction in Analytical Chemistry*, Wiley, New York, 1962.
12. R. B. Roof, Jr., *Acta Cryst.*, **9**, 781 (1956).
13. J. Stary and E. Hladsky, *Anal. Chim. Acta*, **28**, 227 (1963).
14. J. F. Steinbach and J. H. Burns, *J. Am. Chem. Soc.*, **80**, 1839 (1958).

Received by editor March 6, 1967

Revision received May 20, 1968

Submitted for publication May 22, 1968